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JACOBI'S INTEGRAL AND AV-EARTH-GRAVITY-ASSIST (AV-EGA)
TRAJECTORIES

Theodore H. Sweetser, Ph. D.+

The AV-tarth-Gravity-Assist trajectory technique offers powerful
advantages in maximizing payload mass, but the conventional
“explanation” of how it works leaves the following paradox
unexplained: by slowing down at the slowest point in the trajectory,
far mot-e energy is gained than an equal speed-up at the fastest point,
A better explanation results from consideration of Jacobi’s integral,
which is calculated in the rotating frame in which the Sun-Earth line is
fixed. In this frame the deep-space maneuver magically transforms
into one which increases the velocity at the point whet e the velocity is
already maximum,

This perspective cm the AV-EGA has two advantages. Firstly, it allows
a simple calculation of the ratio between the magnitude of the deep-
space maneuver ant! the resulting increase in the effective departure
velocity. Secondly, it has suggested possible variations in this
technique. In particular, a ncw kind of lunar transfer trajectory from
low [ arth or-bit is presented which has lower AV requirements than the
Hohmann transfer.

INTRODUCTION

One of the most powerful tools in the trajectory designer's bag of tricks
is the AV-EKarth-Gravily-Assist (AV-IXGA). This tool, first introduced by G. R.
1 loll enbeck!at this conference in1975, uscs a maneuver in deep space in
such a way that it has a greatly magnified effect on the fina departure
velocity fromISarth. Typically, adeep space mancuver of 0,5 km/s can
i ncrease the departure velocity by 2 km/s or more, where the on] y cost
incurred is an increased {light time.

On the AV-EGA trajectory (sceligurel ) a spacecraft leaves larthon,
for example, a two-year heliocentric orbit. At the aphelion of that orbit a

4 Mathematician, Member AAS, AIAA, Member of 1 echnical Staff, Jet Propulsion
[ aboratory, 4800 Oak Grove Dr.,Pasadena, CA, 91109. F'hone: (818) 354-4986,




Figure 1 Inertial ecliptic plane view of an exterior AV-Earth-

Gravity-Assist trajectory to Comet Kopff.

mancuver is performed which reshapes the orbit to lower its perihelion. The
orbit timing is arranged so that when the spacecraft then crosses Karth's
orbit (either before or after periheli on) it encounters Karth in a gravity assist
maneuver. The advantlage of the AV-EGA is that the increase in perigee
velocity from the launch to the encounter is much greater than the velocity
change at the deep-space maneuver. The resul ting heliocentric energy is
greater than in the initia two-year orbit ant] againtheincrease is more than
could be obtained from the deep-space mancuver aone.

Two aspects of the AV-IEGA are counterintuitive (as is often the case in
orbitalmechani es). One is that the deep-space maneuver which sets up the
heliocentric energy gai n actua] y reduces the heliocentric energy - the
spacecraft s] ows clown at apheli on to move the perihelion closer to the sun.
The second aspect is perhaps more puzzling to the experienced trajectory
designer (who is usedtothe occasional] y paradoxical behavior of orbits). 1 n
general, the most efficient time to change orbital energy is when the veloci ty
is highest, i.c., at periapse. 1 nthe AV-EGA, however, the clmp-space




mancuver is most cffective whendonewherethe velocity is lowest, i.e, at
aphelion.

The conventional explanation of the AV-IXGA ignores these aspects as
follows: it is easiest to reshape an orbit where the velocity is lowest; the more
the orbit shape is changed, the greater the angle between the spacecraft orbit
and Earth’s orbit where they cross; the greater the angle, the greater the
difference between the spacecraft’s velocity and larth's velocity at encounter;
this velocity difference when aligned with Xarth's velocity by the gravity
assist gives us our fina heliocentric energy. All this is true and is fine as far
as it goes, Nevertheless, there remains an clement of mystery in the AV-EGA
because of the paradoxes discussed above and becausc there is no direct way
in the conventional explanation to relate the magnitude of the deep-space
mancuver to the fina gain in heliocentric energy. This mystery is deepened
by the fact that an analogous trajectory in the larth-Moon system (Figure 1
with the Karth replacing the Sun andthe Moon replacing the Earth). This
trajectory leavesthe Moon on a two-month orbit with a maneuver at the
apogee but does not show any advantage with respect to the fina Iarth-
rclative energy over increasing the lunar departure velocity by an equal
amount. ‘1 here is nothing in the conventional explanation which would
predict that a tool which works inthe Sun-Earth system fails in the Karth-
Moon system.

JACOBI'S INTEGRAL EXPLAINS ALL

The reason for the apparent mysteriousness of the AV-EGA trajectory
is that th c discussion above considersthe trajectory as a series of two-hod y
problems: I'larth/spacecraft for launch, Sun/spacecraft for initial orbit and
deep-space maneuver, ]CarLh/spacecraft for gravity assist maneuver, and
Sun/spacecraft for final orbits. 13utthe AV-IXGA is very much a creature of
the three-body problem, in which it is not appropriate 1o base an anaysis on
energy. Instead, we must turn to the three-body analog of energy, Jacobi’'s
i ntegral.

If the Karth traveled in a circular orbit around the Sun and the only
acccleratli ons experienced by a (mass] css) spacecraft were caused by the
central gravity of the Karth and Sun, then Jacobi's integral?.3
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is a constant al ong the spacecraft’s trajectory, where v is the magnitude of the
rotating-coordinate velocity, which is the velocity of the spacecraft in a



Table 1.

CONSTANTS

a  =149597870. km mean semi-major axis of the Karth's orbit - 1 AU
Ms .1 .327] "24 x 101 Tkm3/s? Gravitational constant timesthe mass of the Sun
He = 398600.5 km3/s2 Gravitational constant times the mass of the Earth

@= 1990987 x 10" rad/s mean angular rotation rate of the Karth-Sun system

threw dimensional coordinate system centered at the Karth-Sun barycenter
and rotating with the Karth-Sunsystem, p is the distance from the
barycenter to the projection of the spacecraft’s position onto the Karth-Sun
orbit plane, re is the distance from the spacecraft to the Karth, and 7's is the
distance from the spacecraft to the Sun. (Definitions for o, e, and Hs arc
given in Table 1.)

In a two-body probl cm, energy is a constant function of position and
the magnitude of the inertial velocity. 1n the circular restricted three-body
problem, Jacobi’s integral is a constant function of position and the
magnitude of therotation-relative velocity. For our purpose% here we may
consider amancuver Lo be an instantaneous velocity change which dots not
affect position. Thus, while an encrgy change is maximized for a maneuver if
the maneuver is done when the inertial velocity is greatest (at the periapse of
a conic), a change in Jacobi's constant is maximized if a mancuver is done
when the rotating-coordinate velocity is greatest.

This is the key to understanding the AV-IXGA. The trajectory of
Figure 1isreplotted in Figure 2, but this time in the rotating frame which
keeps the Sun-Karth line fixed. The figure shows graphically how the deep-
spacc maneuver is in fact done when the magnitude of the rotating-
coordinate velocity is greatest and is donein the direction of the rotating-
coordinate velocity, }Furthermore, the consequent change in Jacobi’'s constant
can be used to estimate the veloci ty inerease from launch perigee to
encounter perigee whi chresults from the deep-space mancuver, so the
magnifying effect of the AV-IXGA can be calculated.

A NUMERICAL EXAMPLE

Of course thereal world is not a circular restricted three-bod y problem.
Nor has a straightforward AV-IXGA {rajectory been flown in aspace mission.
But AV-KGA trajectories have been carried as bascline trajectories during the
design process of several missions. Inparticular at onetime the baseline
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Figure 2  Rotating ecliptic plane view (fixed Sun-Earth line) of
the exterior AV-tarth-Gravity-Assist trajectory
shown in Figure 1,

trajectory for the Comet Rendezvous/A steroid Flyby mission (CRAW) used a
two-year AV-IXXGA which had a clccp-space maneuver of 0.6 km/s anda flyby
perigee velocity which was 2.2 km/s greater than the insertion perigee
velocity (sew Ifigure 1). 1 ret’'s compare this to anestimate obtained by using
Jacobi's constant.

We start by assuming the Karthtravels in a circular orbit around the
Sun according to the constants inTable1. A two-.ycar orbit which is tangent
al perihelion to Karth's orbit has an aphelion distance of 2.1'75 AU. At that
distance, a point fixedinthe rotating Karth-Sun system has an inertial
velocity of 64.78 km/s (== 2.175 AU)inthe direction of the rotation;
cquivalently a point fixed in inertial space at that distance has a rotating-
coordinate velocity of cqual magnitude but inthe opposite direction. Since
the spacecraft speed at apheli on is 16.03 km/s, the spacecraft’s rotating-
coordinate velocity there is 48.75 km/s.



A point fixedclose to Karth, say at 170 km altitude, has a negligible
rotating- coordinate velocity in the Iarth-Sunrotating system. Thus for the
launch andcencounter, the spacecraft’s rotating- coordinate velocity is
cssenlially the same as its Iarth-relative velocity regardless of the
orientation of the hyperbola, This is 12.15 km/s at 170 km altitude on a
hyperbol a launching into a two-year heliocentric orbit.

To calculate the change in Jacobi’s integral resulting from a velocity
change, we substitute w Avior v in equation (1) and compare the result to get

- AC = 2vAv 4 (Av)? (2)

so that for small Av wesce thal AC is roughly proportional to the rotating-
coordinate velocity. For the case analyzed here this gives about a
magnificationfactor of 4 (=4 8,75/12,15), in good agrecement with the data
More precise] vy, if vq is the rotating-coordinate velocity at aphelion and vy is
the rotating-coordinate velocity at perigee, we have

2 Vi Avp A (AvE? = 2vg Avg - (Avg)® (3)
or
(Avpf 4 2-12.1 bAvy - 2:48.75:0.6- 0.6 O (4)

SO that Avp=2.22 km/s, in even better agrecement with the data

Now we can sce why an analogous trajectory departing outward from
the Moon fails to have any advantage. The rotating-coordinate velocity at the
apogee of a two month orbit (whose perigee is tangent to the Moon's orbit) is
less than the perilune velocity at departure, which is 2.3 km/s. The Moon's
gravitational aliraction is too large compared to the Earth’s for a twice-period
maneuver orbit to sel up an advantageous maneuver. A threw-month orbit
woul cl offer a slight advantage, though.

VARIATIONS ON AV-GRAVITY-ASSIST TRAJECTORIES

The example above was a two-year AV-EGA, but of course there is
nothing to constrain the initial orbit to have a two-year period. A thrm-year
orbit wound do as welland in fact, as this analysis implies, gives a greater
magnifi cation of the decp-space maneuver. A less commonly considered
alternative isal .5-year orbit whi ch encounters Karth after three years.

Another variation is simply to reverse the trgjectory, making it an

arrival rather than a departure. 1 n thisreverse AV-ISGA trajectory a
spacecraft, would comeintangent to I arth's orbit where a gravi t-y assist
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would 1 ower both aphelion ant] perihelion. Then a maneuver at aphelion
would raisec perihelion back up to tangency with I arth’'s orbit for an arriva
with alower V__ than at the first encounter. The reverse AV-1XGA would be
cffective at arth for sample return missions from outer planets comets, or
asteroids. Bult it's usefulness is not confined to arrival at Ioarth. As C.-W.
Yen® showed at this con ference in 1985, such a trajectory technique is very
uscful for reducing the rendezvous requirements of M ercury orbiter missions.
I*rom the point of view of an ana ysis based on Jacobi’s integral, the
mancuver is g owing down the rotating-coord inate velocity at the point where
that velocity is maximum. Calculation of theratio between the maneuver
and the savings in rendezvous AV would be the same as in the previous
section.

Arc there other variations? The above analysis has shown us that all
that is really necessary for a AV-Gravity-Assist (AV-GA) trajectory is that a
spacecraft have successive encounters with a body where the orbit between
encounters contains a point where its rotating-coordinate velocity is greater
than at encounter periapse. in the cases considered so far, theintermediate
orbit is outside the body’s orbitl so that in the rotating frame it looks
retrograde with a maximum velocity at apoapsc.

This leads us to suspect the existence of a new type of AV-GA
trajectory. The AV-JXGAs above all start with orbits larger than Earth's orbit;
let's call them exterior AV-IXGA trajectories. What about interior AV-EGA
trajectori es, that start off with orbils smaller than Karth's? For example, if a
spacecraft starts off'in a 2/3- year orbit it leaves with very nearly the same
velocity relative to Earth as in a two-year orbit but in the opposite direction.
At perihelion the spacecraft has a rotating-coordinate velocity of 31.32 km/s
so a magnification factor of about 21/2 is possible for this AV-1GA. Figure 3
shows such an interior AV-1XGA used for a transfer from larth to Mercury.
in this case, a AV of 1.4 km/s at perihelion results in a velocity increase of
3.2 km/s from injection perigee to flyby perigee. For this type of trajectory
onc of the paradoxes discussed earlier has disappeared since the maneuver is
done at perihelion. The other paradox remains - after speeding up at
perihelion the ultimate solar orbit is smaller.

Such interior AV-XGA trajectories were mentioned by }ollenbeck?
whenhe first introduced the AV-IEGA technique. lle considered them (in the
context of outer-planet missions) only briefly, because of the fortuitous
circumstance that if the period of the intermediate orbit is less than 4/5 year
then a gravity assist at Venus becomes possible, giving a free AV, Indced,
such a trajectory is being usedby Galileo, where the “second” larth
encounter is actually done twice over because the V_, at Earth starts out
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Figure 3 Inertial ecliptic plane view of an Interior AvV-Earth-
Gravity Assist trajectory to Mercury.

opposite to Karth's velocity direclion ant] has o be turned around to align
with it inorder to get a departure to an outer planet (Jupiter in this case).

Such extreme bending of the V, vector isnot needed i f the interior
AV-EGA is being used to get to aninner planet such as Mercury. Once again,
however, the availability of Venus obviates the need for a propulsive
maneuver. Jurthermore, a return to Iarth is not desired since a rendezvous
at Mercury has a lower velocity after arrival from Venus than after arrival
from Karth. What, remains is preci scaly the kind of trgjectory di scussedby
C.-W. Yen®. Thusit scems that interior AV-GA trajectories have no useful
application toinnerplanctmi ssi ens. Inreverse they could be used for
reducing rendezvous AV in Mars or outer-planct missions, but then the flight
times become prohibitive (a 1:2 resonant rendezvous with Jupiter, for
example, would add 11yecars to the flight time, andthat's the best possible).
But there isonc appli cation where conditions arc favorable for aAV-GA
trajectory,



‘1 HEREVERSE INTERIOR AV-LUNAR-GRAVITY-ASSIST

The lunar transfer problem has just the right situation for this
application. The spacecraft starts out in an orbit relatively close to the
primary andinjects into aHlohmann transfer to the Moon. instead of
rendezvousing immediately, however, the spacecraft flies by so that the
gravity assist at the Moonraises both perigee and apogee. Thena mancuver
at perigee lowers the apogee back to tangency with the Moon’s orbit, with a
net savings depending on the rotating-coord inate velocity at perigee and the
amount of apogee change needed.

Asit turns out, the relatively large gravitational attraction of the Moon
results in high perilune velocities at rendezvous. The rotatinS-coordinate
velocity at perigee is higher only when the Perigee is close to Iarth,
Furthermore, the Moon's orbit has significant eccentricity, which complicates
the analysis. Using conies the resull is that for rendezvous at the Moon's
perigee, only intermediate orbits between 1/3 and 2/5 of the M eon’s period can
be used; at the Moon's apogee the period can be increased to 1/2. We are now
faced with two counteracting factors. Ononc hand, the lower the perigee the
higher the rotating-coordinate velocity so the higher the magnification
multiplier that can be applied to the mancuver. On the other hand, a lower
perigee raise caused by the lunar flyby corresponds to a lower apogee raise
which reduces the size of the mancuver needed to restore the apogee back to
its initial value.

These factors arc pretty much i]] bal ante. For example, at about noon
on28 May 2003 the Moon will be at apogec al a radius of 406168 km. If a
spacecraft startsin a circular parking orbit with a radius of 6500 km, then a
11 ohmann transfer to the Moon resultsin avelocity atl the surface of the
Moon of 2504.4 m/s. Instead we can flyby to raise the perigee to a radius of
12000 km, since a1 2000 km by 406168 km orbit has a period just 2/5 of the
Moon's. ‘Then a 6 m/s mancuver at perigee (where the velocity is 8033 m/s)
lowers the velocity at the surface of the Moon to 2485.6 m/s for a net savings
of about 13 m/s. Similarly, a 1/2 period intermediate orbit has a perigee at
78832 kmand a perigee velocity of 2910 m/s. This case resultsin anet
savings of 12 m/s after an 83 m/s perigee mancuver reduces the arrival
surface velocity by 95 m/s to 2409.5 m/s,

The Moon, however, is so big relative to the Karth that this conic
analysis is suspect. Toverify these results, two trajectories were integrated
which included the effect of the central gravities of the Sun, Earth, and Moon.
The first was a ncar-Hohmann transfer from a 6500 km radius parking orbit
at Karth to aninsertioninto a 100 km altitude circular orbit at the Moon.
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Figure 4 Inertial lunar-orbit plane view of a@reverse interior
AV-Lunar-Gravity-Assist trajectory to the Moon.
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Figure 5 Rotating lunar-orbit plane view (fixed Earth-Moon line)
of the reverse interior AV-Lunar-Gravity -Assist
trajectory shown in Figure 4.
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For this case, the injection AV was 3154.8 m/son 93/8/29 11:04:03 and the
orbit insertion AV was 800.5 m/s on 93/9/3 10:27:58, for a total AV of

38565.3 m/s. The sccond trajectory is illustrated in Figures 4 and 5. Figure 4
shows it in aninertial frame with the Moon's orbit also drawn. Figure 5
shows it in arotating frame with the larth-Moon line fixed. Since the flyby
occurred on93/9/3 13:47:27 al a distance of 17815 km from the Moon's center
on the side towards the arth, the injection AV was reduced dlight] y to
3150.4 m/s on 93/8/29 19:33:58. The post-fl yby perigee AV was 13.3 m/s a a
perigee radius of 32790 km on 93/9/13 13:08:04. The insertion AV was

768.6 m/s on 93/9/30 14:37:53, for atotal AV of 3923.3 m/s and a net savings
over thedirect transfer of 23 m/s, about twice what the conic analysis
predicted. Note aso that the perigee distance is quite different than in the
conic analysis, mostly caused by needing to alow for additional time spent in
the orbit between the lunar flyby and the first perigee since the flyby delays
the apogec as well as raising it.

This analysis demonstrates the existence of a new kind of lunar
transfer trajectory. Althoughthe AV savings over the Hohmann transfer are
small, this transfer shows other advantages as well. Because the lunar flyby
is distant and the post-flyby period is adjusted at perigee, course correction
requirements are less demanding than for the direct transfer. Also, almost
the entire tragjectory is spent within the Moon's orbit so there are no longer-
distance communication requirements.

SUGGESTIONS FOR FURTHER WORK

There arec anumber of open questions about. AV-EGA trajectories
suggested by this work. 1t is possible to calculate the AV gain without
Jacobi's integral by finding the flight path angle change at Earth’s orbit
radius. How docs this formula compare to theoncin this paper? Can we
lecarn anything new about J acobi'sintegral from the comparison? What is the
minimum exterior AV-IXGA orbit leaving tangent to Earth’s orbit which
results i n an energy gain? 1s there a nearl y one-year return AV-JXGA
tragjectory (wi thadi fferent cccentricity or inclination) which results in a AV
gain? Isthere a minimum departure Cgnecessary for a AV-EGA to result. in
aAV gain?

Severalissues arc open concerning reverse interior AV-1L.GA lunar
transfers as well. IFirst of all, the example shownin Figures 4 and5 has not
been optimized (note that the rendezvous éllipse is not tangent to the Moon's
orbit). Also, when a multiconic model of the 2/5-pyeriod transfer was made it
was found that the post-flyby orbit's apogee was inside the Moon's orbit,
app arently removing the need for a perigee mancuver ant] thus preventing
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any AV savings. What happens when a transfer is attempted when the
arrival does nol happenat the M inn's apogee? H ow demanding are the real
mancuver requirements? What if we include a model of the launch, so that
the parking orbit at Iarth has various inclinations with respect to the Moon's
orbit so that the flyby has to reduce inclination as well as pump the orbit up?
All these questions need to be answered inorder to determine the practical
uscfulness of such a trajectory.
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